Thermodynamic basis for sequence-specific recognition of ssDNA by an autoantibody.

نویسندگان

  • P C Ackroyd
  • J Cleary
  • G D Glick
چکیده

11F8 is a sequence-specific DNA binding monoclonal autoantibody previously isolated from an autoimmune lupus-prone mouse [Stevens, S. Y., and Glick, G. D. (1999) Biochemistry 38, 560-568]. This antibody, like many other lupus anti-DNAs, localizes to kidney tissue and eventually leads to renal damage through a process that first involves the binding of DNA antigens. A series of experiments were conducted to investigate the thermodynamic and structural basis by which this antibody discriminates between specific, noncognate, and nonspecific sequences. Sequence-specific binding occurs with a minimal dependence on the polyelectrolyte effect along with a favorable binding enthalpy reflecting the presence of base stacking and contacts to DNA bases. This favorable binding enthalpy apparently is derived from desolvation at the binding interface and is consistent with recent models of the nonclassical hydrophobic effect. Noncognate recognition is also driven by the nonclassical hydrophobic effect, but is accompanied by highly unfavorable entropies that are responsible for reduced affinity relative to the high-affinity consensus sequence. Nonspecific recognition is driven completely by the polyelectrolyte effect involving extensive electrostatic interactions with the phosphate backbone. Collectively, the data demonstrate the ability of 11F8 to adapt its mode of binding to the available DNA surface and provide a thermodynamic model for sequence-specific recognition of single-stranded DNA. The salient features of this model employ the paradigms invoked to explain protein.dsDNA, protein.RNA, and antibody.antigen binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of conformational dynamics in sequence-specific autoantibody*ssDNA recognition.

11F8 is a sequence-specific monoclonal anti-ssDNA autoantibody isolated from a lupus prone mouse that forms pathogenic complexes with ssDNA, resulting in kidney damage. Prior studies show that specificity is mediated by a somatic mutation from serine at (31)V(H) to arginine. Reversion back to serine in 11F8 resulted in >30-fold decrease in affinity and altered thermodynamic and kinetic paramete...

متن کامل

Structural modeling of sequence specificity by an autoantibody against single-stranded DNA.

11F8 is a sequence-specific pathogenic anti-single-stranded (ss)DNA autoantibody isolated from a lupus prone mouse. Site-directed mutagenesis of 11F8 has shown that six binding site residues (R31VH, W33VH, L97VH, R98VH, Y100VH, and Y32VL) contribute 80% of the free energy for complex formation. Mutagenesis results along with intermolecular distances obtained from fluorescence resonance energy t...

متن کامل

Effect of somatic mutation on DNA binding properties of anti-DNA autoantibodies.

Autoantibodies that bind DNA are a hallmark of systemic lupus erythematosus. A subset of autoantibody*DNA complexes localize to kidney tissue and lead to damage and even death. 11F8, 9F11, and 15B10 are clonally related anti-DNA autoantibodies isolated from an autoimmune mouse. 11F8 binds ssDNA in a sequence-specific manner and causes tissue damage, while 9F11 and 15B10 bind ssDNA non-specifica...

متن کامل

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

Specific inhibition of the E.coli RecBCD enzyme by Chi sequences in single-stranded oligodeoxyribonucleotides.

RecBCD is an ATP-dependent helicase and exonuclease which generates 3' single-stranded DNA (ssDNA) ends used by RecA for homologous recombination. The exonuclease activity is altered when RecBCD encounters a Chi sequence (5'-GCTGGTGG-3') in double-stranded DNA (ds DNA), an event critical to the generation of the 3'-ssDNA. This study tests the effect of ssDNA oligonucleotides having a Chi sequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 40 9  شماره 

صفحات  -

تاریخ انتشار 2001